
Appendix
This appendix contains the following sections:

• Section A: Dataset
• Section B: Cross-dataset Testing
• Section C: Optimization of Scene-Similarity Adaptive

Local Aggregation
• Section D: Exploring Different Similarity Measures

in SSALA
• Section E: Limitation and Failed Cases
• Section F: Detailed quantitative results
• Section G: Comparative Analysis of SSALA and

SOTA Federated Aggregation Algorithms

Figure 1: Client hardware devices used in our experiments.

A. Dataset
Fig. 1 shows the edge devices we use in the federated learn-
ing setting.
ShanghaiTech consists of 437 fixed-angle street surveil-
lance videos across 13 different scenes (307 normal and 130
anomalous videos). We adopt the standard WSVAD setting,
which incorporates a subset of anomalous test videos into
the training set, ensuring that both training and testing sets
cover all scenes.
UBnormal is a large-scale open-set dataset, comprising 543
videos across 29 scenes synthesized using Cinema4D soft-
ware. The key challenge of UBnormal lies in the disjoint
types of anomalies between the training and testing sets, en-
abling a rigorous evaluation of detection methods in real-
world scenarios.

B. Cross-dataset Testing
We tested the proposed method on two datasets, UCSD Ped2
and Avenue, which both capture single-scene surveillance
scenarios but differ significantly in resolution and frame
rate. Specifically, the UCSD Ped2 dataset consists of 16
training videos showcasing normal pedestrian activity and
12 test videos containing abnormal events. Examples of
anomalies include bikers, skaters, and vehicles appearing
in a pedestrian-only area. Each video has a resolution of
240×360 pixels and a frame rate of 10 fps. The Avenue
dataset consists of 16 training videos containing normal ac-
tivities and 21 test videos that include various anomalous
events. These anomalies involve actions such as people run-
ning, throwing objects, or walking in the wrong direction.
Each video is recorded at a resolution of 360×640 pixels
with a frame rate of 25 fps.

These two datasets are commonly used to evaluate semi-
supervised and self-supervised methods, with the training
set containing only normal videos. To align with the weakly
supervised setting, we re-divided the training and test sets of
these datasets, and the details of the splitting method can be
found in the supplementary materials.

To assess the performance of our method on fully het-
erogeneous, single-scene datasets, we assign each dataset
to a distinct client in accordance with the FL setup. For
a fair comparison, we re-implemented AR-Net and RTFM
within the FL framework using publicly available source
code and the recommended parameters. These adaptations
are referred to as Fed-AR-Net and Fed-RTFM, respectively.

The experimental results, presented in Table 1, demon-
strate that our method achieves a balanced improvement in
both AUC and FAR compared to Fed-RTFM and Fed-AR-
Net. Notably, our method achieves the best FAR, highlight-
ing its robustness in fully heterogeneous single-scene set-
tings. This result highlights the effectiveness and adaptabil-
ity of our approach, making it a compelling choice for FL-
WSVAD under such challenging scenarios. It is important
to note that the inputs to Fed-RTFM and Fed-AR-Net are
vector features, so the tensor features from VideoMAE can-
not be used as input. For a fair comparison, we also used
I3D features as the input for the first branch (CAAD) and
disabled CSAD.

C. Optimization of Scene-Similarity Adaptive
Local Aggregation
The parameter optimization of SSALA are as follows:{
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The gradients of the loss function with respect to Ai and
Wi are computed as:{
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At each iteration, the adaptive weights Ai and Wi are ad-
justed to better capture the personalized information for each
client:
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Method Feature PED2 Avenue

AUC FAR AUC FAR

Fed-RTFM (Fedavg) I3D 93.74% 3.98% 96.26% 2.78%
Fed-AR-Net (Fedavg) I3D 87.62% 13.21% 92.18% 19.82%
Ours (CAAD+SSALA) I3D 95.05% 1.56% 95.38% 2.80%
Ours (Fedavg) MAE 98.21% 0.01% 96.67% 0.12%
Ours (SSALA) MAE 99.82% 0.00% 98.94% 0.00%

Table 1: Performance comparison of FL on Ped2 and Avenue datasets with different resolutions and frame rates.
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where µ and η are hyperparameters.

D. Exploring Different Similarity Measures in
SSALA
We have evaluated various similarity measures, including
SSIM, Normalized Cross-Correlation (NCC), and Feature
Similarity Index (FSIM), to assess the performance of our
model. As shown in Table 2, SSIM achieves the highest av-
erage AUC (97.86%) and the lowest FAR (0.03%), demon-
strating its superior performance compared to both NCC and
FSIM. Below, we provide a brief introduction to the two
metrics.

NCC is a measure based on pixel intensity correlation,
suitable for template matching and image registration tasks,
especially when the images are well-aligned. It evaluates
similarity by calculating the normalized dot product be-
tween images. FSIM evaluates image similarity by consid-
ering both low-level and high-level features, such as edges,
textures, and phase consistency. It strikes a balance between
structural and feature similarity, offering stronger robustness
than NCC. FSIM is also better at adapting to image distor-
tions compared to SSIM, and performs exceptionally well in
tasks requiring more detailed perceptual quality evaluation.

As shown in Fig. 2 and Fig. 3, we also provide scene sim-
ilarity analysis for both the ShanghaiTech and UBnormal
datasets, using the Structural Similarity Index (SSIM) as the
evaluation metric. These figures demonstrate the degree of
visual consistency across different scenes, offering valuable
insights into the variability and shared characteristics within
each dataset.

E. Limitation and Failed cases
Illumination variations and occlusions are well-recognized
challenges in computer vision, with significant progress
made in recent research. However, these challenges are par-
ticularly pronounced in the WSVAD task. The absence of
fine-grained annotations makes it difficult to construct an

Figure 2: Scene Similarity in the ShanghaiTech Dataset
Measured by SSIM.

end-to-end network. Consequently, we rely on pre-trained
feature extractors to capture features from video snip-
pets. Unfortunately, these pre-trained extractors, which are
trained on source domains unrelated to the VAD task, may
fail to extract effective representations of anomalous objects.
As a result, reasoning based on these transferred features can
lead to higher FAR when inferring occluded objects.

As demonstrated in Figs. 4 and 5, the majority of ex-
isting datasets label occluded objects as normal, which re-
duces the difficulty for semi-supervised and weakly super-
vised methods. For instance, in Fig. 4, the bicycle is classi-
fied as anomalous, but during the fully occluded phase, its
ground truth label is marked as normal. Similarly, in Fig. 5,
the scooter is classified as anomalous, though the anomalous
target is very small and close to the normal target. During the
fully occluded phase, its ground truth label is also marked as
normal. It is evident that small objects present a significant
challenge in WSVAD.

To address these issues, we plan to incorporate human
skeleton information and methods for day-night domain
adaptation in future work to enhance model robustness un-
der varying illumination conditions.

The failure cases of our method, as depicted in Fig. 6,
highlight several critical challenges. The primary causes of
detection failure stem from small-scale targets and discrep-
ancies between visual and semantic interpretations. In Fig.
1(a), the anomalous target (an electric scooter) moves lon-
gitudinally towards the camera from a distance. Initially, the
target is too small to be accurately detected or described,
which is a common challenge across various visual tasks.
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Metric Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 Average

SSIM AUC (%) 97.63 99.22 88.52 96.28 98.51 99.55 97.54 97.31 100.00 99.69 100.00 98.94 100.00 97.86
FARN (%) 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

NCC AUC (%) 96.09 98.54 86.32 91.65 98.51 76.35 97.45 94.15 100.00 98.46 100.00 98.54 100.00 94.46
FARN (%) 0.18 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04

FSIM AUC (%) 95.96 96.47 85.93 95.28 98.51 76.35 97.45 97.14 100.00 97.83 100.00 98.28 100.00 95.13
FARN (%) 0.09 0.00 12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13

Table 2: AUC and FAR Performance Across Similarity Metrics on the ShanghaiTech Dataset. SSIM denotes Structural Simi-
larity Index, NCC denotes Normalized Cross-Correlation, and FSIM denotes Feature Similarity Index.

Figure 3: Scene Similarity in the UBnormal Dataset Mea-
sured by SSIM.

Figure 4: Ground truth vs. predictions: Occlusion scenario
in video 01 0052 from the ShanghaiTech dataset.

Furthermore, as shown in Fig. 1(b) , while the model suc-
cessfully detects instances like a pedestrian being knocked
down, it struggles to capture the entirety of the anomalous
event as specified in the semantic annotation. This issue
arises from the inherent subjectivity in anomaly labeling,
where the human semantic understanding of events may not
align with the visual interpretation by deep networks, partic-
ularly in weakly-supervised settings.

To mitigate these challenges, we can utilize multi-scale
feature representations to improve the detection of small-
scale targets. Additionally, implementing a more objective
ground-truth annotation method for anomalous events would

Figure 5: Ground truth vs. predictions: Occlusion scenario
in video 01 0076 from the ShanghaiTech dataset.

enable a more accurate evaluation of weakly-supervised
models’ performance.

F. Detailed quantitative results

We evaluated the performance of CAAD and CSAD individ-
ually across different scenarios in the ShanghaiTech dataset.
The results are shown in Table 3.

Impact of federated learning algorithms. In Table
4, We evaluate existing FL algorithms for aggregating
global parameters in SSALA, including FedAvg, FedMe-
dian, FedAdam, FedYogi, and FedProx, on detection per-
formance. The findings indicate that the FedAvg algorithm
we used yields the best average performance, although other
algorithms may outperform it in specific scenarios.

Performance Analysis Across Different Scenarios. We
provide a detailed analysis of the performance of each client
in different scenarios of ShanghaiTech dataset. As shown in
Table 5, when considering tasks in different scenarios, we
observed that most clients achieved the high AUC at the
frame level, probably attributable to anomalies induced by
typical anomalous behaviors, such as running. In contrast,
the AUC for Clients 3 and 4 was comparatively lower, possi-
bly due to anomalies occurring at greater distances from the
camera or being influenced by perspective distortion. Table
6 shows the performance of each scene in UBnormal dataset.
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Figure 6: Typical failure cases on ShanghaiTech dataset.

Table 3: Performance Metrics for AUC and FAR across Two Detectors on ShanghaiTech.

Metric Module 1 2 3 4 5 6 7 8 9 10 11 12 13 Average

AUC (%) CAAD 96.39 96.62 87.90 94.36 98.29 99.26 97.26 95.15 100.00 99.55 100.00 98.76 100.00 96.86
CSAD 97.01 95.42 87.46 93.59 98.79 98.86 98.02 95.38 100.00 98.37 100.00 98.17 100.00 96.97

FARN (%) CAAD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CSAD 0.37 0.00 0.11 0.00 0.00 0.05 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.12

Table 4: Performance Metrics for Different Aggregation Algorithms.

Algorithm 1 2 3 4 5 6 7 8 9 10 11 12 13 Average
FedAvg 97.63 99.22 88.52 96.28 98.51 99.55 97.54 97.31 100.00 99.69 100.00 98.94 100.00 97.86
FedTrimmedAvg 97.86 95.88 84.53 95.46 98.59 99.52 95.82 97.27 100.00 94.05 100.00 98.57 100.00 97.35
FedAdam 94.85 98.51 81.95 89.24 98.27 99.17 95.68 92.88 100.00 86.90 100.00 98.16 100.00 95.11
FedYogi 95.17 96.15 83.21 94.19 97.92 98.09 97.77 94.59 100.00 77.20 100.00 97.33 100.00 95.25
FedAvgM 97.23 96.37 85.45 91.11 98.98 98.13 97.20 94.22 100.00 92.96 100.00 98.67 100.00 96.46
FedProx 97.21 92.72 86.09 95.38 98.58 98.81 96.99 96.51 100.00 98.60 100.00 98.79 100.00 97.12

Table 5: Detailed Performance on ShanghaiTech dataset.

Metric 1 2 3 4 5 6 7 8 9 10 11 12 13 Average
AUC (%) 97.63 99.22 88.52 96.28 98.51 99.55 97.54 97.31 100.00 99.69 100.00 98.94 100.00 97.86
FARN (%) 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

G. Comparative Analysis of SSALA and SOTA
Federated Aggregation Algorithms
Fig. 8 presents a 2D visualization of the local learning trajec-
tory in a pathological heterogeneous setting on CIFAR-10.
The figure shows the normalized learning path of a model
across different rounds of federated learning, projected onto
a 2D plane using PCA. Specifically, it displays the local
model projections for client ID 8 from round 130 to round
200. The green dots indicate the model projections from
rounds 130 to 160, during which only the FedAvg model was
applied without using the SSALA local initialization algo-
rithm. In contrast, the red dots represent model projections
from rounds 160 to 200, where the SSALA local initializa-
tion algorithm was activated. This suggests that SSALA is
more effective at guiding the local model’s updates, lead-

ing to smoother convergence and more efficient learning by
capturing and utilizing relevant information from the global
model.

Following the evaluation protocol used in FedALA, Table
7 presents the test accuracy in both pathological and prac-
tical heterogeneous settings, highlighting the performance
of various FL methods, including FedAvg, FedProx, and
SSALA, across datasets like MNIST, Cifar10, Cifar100, and
AG News. In the pathological heterogeneous setting, where
clients receive disjoint subsets of data (e.g., 2 out of 10
classes for MNIST and Cifar10), the results showcase the
challenge of extreme data heterogeneity. In the practical
heterogeneous setting, controlled by a Dirichlet distribution
(β = 0.1) to simulate more realistic uneven data distribu-
tions among clients, SSALA consistently outperforms other
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Table 6: Detailed Performance on UBnormal dataset.

1 2 3 4 5 6

AUC (%) 78.46 88.69 81.78 91.90 85.89 63.34
FARN (%) 0.00 0.00 0.00 0.00 0.00 0.00

7 8 9 10 11 12

AUC (%) 66.42 73.56 78.76 69.22 62.10 92.67
FARN (%) 0.00 0.00 0.00 0.00 0.00 0.00

13 14 15 16 17 18

AUC (%) 77.08 77.73 87.34 64.82 76.24 87.12
FARN (%) 0.00 0.00 0.00 0.00 0.00 0.00

19 20 21 22 23 24

AUC (%) 37.55 78.90 87.18 63.33 72.63 72.98
FARN (%) 0.00 0.00 0.00 0.00 0.00 0.00

25 26 27 28 29 Average

AUC (%) 82.44 93.68 91.62 60.69 68.53 76.51
FARN (%) 0.00 0.00 0.00 0.00 0.00 0.00

Figure 7: PCA Projection of Learning Trajectories.

methods. SSALA demonstrates particularly strong perfor-
mance in highly heterogeneous environments, achieving su-
perior accuracy. These results underline SSALA’s effec-
tiveness in addressing statistical heterogeneity in federated
learning scenarios.

Table 8 presents the test accuracy and improvements
brought by the SSALA module on the Tiny-ImageNet,
MNIST, and Cifar100 datasets, under various heterogene-
ity and scalability settings. The table compares the perfor-
mance of SSALA against state-of-the-art FL methods, in-
cluding FedAvg, FedProx, and various personalized FL ap-

Figure 8: The training loss of the global objective in SSALA
on Cifar10 in the pathological setting.

proaches. It highlights that SSALA consistently achieves
superior accuracy, with notable improvements, particularly
in highly heterogeneous settings (Dirichlet 0.01) and with
larger numbers of clients. These results demonstrate the ef-
fectiveness of ALA in precisely capturing the desired infor-
mation from global models, yielding better personalization
for local models. Furthermore, the scalability experiments
show that SSALA maintains high accuracy with minimal
degradation, even as the number of clients increases to 100,
showcasing its robustness and applicability across various
federated learning environments.

As shown in Fig. 8, we record the average loss of the lo-
cal models after training (orange diamonds) and the average
loss before local training following local initialization (green
dots) at each iteration. For clarity, we display a point every
30 rounds. When the number of iterations exceeds 500, both
the loss function values represented by the orange diamonds
and green dots fall below 1× 10−3. Moreover, the loss val-
ues corresponding to the orange diamonds and green dots
are nearly equal, indicating that SSALA has converged.
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Settings Pathological heterogeneous setting Practical heterogeneous setting

Methods MNIST Cifar10 Cifar100 Cifar10 Cifar100 TINY TINY* AG News

FedAvg 97.93±0.05 55.09±0.83 25.98±0.13 59.16±0.47 31.89±0.47 19.46±0.20 19.45±0.13 79.57±0.17
FedProx 98.01±0.09 55.06±0.75 25.94±0.16 59.21±0.40 31.99±0.41 19.37±0.22 19.27±0.23 79.35±0.23

FedAvg-C 99.79±0.00 91.38±0.03 66.17±0.03 90.34±0.01 51.80±0.02 30.67±0.08 36.94±0.10 95.89±0.25
FedProx-C 99.80±0.04 91.97±0.04 66.07±0.08 90.33±0.01 51.84±0.07 30.77±0.13 38.78±0.52 96.10±0.22

Per-FedAvg 99.63±0.02 89.63±0.23 56.80±0.26 87.74±0.19 44.28±0.33 25.07±0.07 21.81±0.54 93.27±0.25
FedRep 99.77±0.03 91.93±0.14 67.56±0.31 90.40±0.24 52.39±0.35 37.27±0.20 39.95±0.61 96.29±0.11
pFedMe 99.75±0.02 90.11±0.10 58.20±0.14 88.09±0.32 47.34±0.46 26.93±0.19 33.44±0.33 91.41±0.22
Ditto 99.81±0.00 91.49±0.06 67.23±0.07 90.35±0.04 52.87±0.64 32.15±0.04 35.92±0.43 95.45±0.17
FedAMP 99.76±0.02 90.79±0.16 64.34±0.37 88.70±0.18 47.69±0.49 27.83±0.11 29.11±0.15 94.18±0.09
FedPHP 99.73±0.00 90.01±0.00 63.09±0.04 88.92±0.02 50.52±0.16 28.17±3.26 29.90±0.51 94.38±0.12
FedFomo 99.83±0.00 90.71±0.07 62.49±0.22 88.06±0.02 45.39±0.45 26.33±0.22 26.84±0.11 95.84±0.15
APPLE 99.75±0.01 90.97±0.05 65.80±0.08 89.37±0.11 53.22±0.20 35.04±0.47 39.93±0.52 95.63±0.21
PartialFed 99.86±0.01 89.60±0.13 61.39±0.12 87.38±0.08 48.81±0.20 35.26±0.18 37.50±0.16 85.20±0.16
FedALA 99.88±0.02 91.83±0.02 67.30±0.06 90.78±0.03 55.27±0.04 40.59±0.04 42.11±0.05 96.10±0.08

Our 99.91±0.01 92.20±0.07 67.85±0.04 91.08±0.02 55.51±0.05 40.68±0.05 44.38±0.04 96.33±0.09

Table 7: The test accuracy (%) in the pathological heterogeneous setting and practical heterogeneous setting.

Heterogeneity Scalability Applicability of module

Datasets Tiny-ImageNet MNIST Cifar100 Tiny-ImageNet Cifar100

Methods Dir(0.01) Dir(0.1) 100 clients 100 clients Acc. Imps. Acc. Imps.

FedAvg 15.70±0.46 98.81±0.01 31.95±0.37 39.51±1.22 40.68±0.05 21.22 55.51±0.05 23.62
FedProx 15.66±0.36 98.82±0.01 31.97±0.24 31.97±0.24 41.31±0.07 21.94 56.36±0.55 24.37

FedAvg-C 49.88±0.11 99.65±0.00 47.90±0.12 47.94±0.25 — — — —
FedProx-C 49.84±0.02 15.70±0.46 48.02±0.02 48.11±0.19 — — — —

Per-FedAvg 39.39±0.30 98.90±0.05 36.07±0.24 47.96±0.8 39.02±0.16 13.95 55.67±0.44 11.36
FedRep 55.43±0.15 99.48±0.02 44.61±0.20 41.48±0.05 — — — —
pFedMe 41.45±0.14 99.52±0.02 46.45±0.18 43.27±0.46 31.04±0.17 3.74 47.55±0.41 0.21
Ditto 50.62±0.02 99.64±0.00 52.89±0.22 48.94±0.04 43.28±0.12 11.13 56.41±0.11 3.54
FedAMP 48.42±0.06 99.47±0.02 40.43±0.17 — 27.88±0.17 0.05 47.81±0.23 0.12
FedPHP 48.63±0.02 99.58±0.00 49.70±0.31 49.99±0.73 31.21±0.54 3.04 53.60±0.16 3.08
FedFomo 46.36±0.54 99.33±0.04 38.91±0.08 37.70±0.10 — — — —
APPLE 48.04±0.10 15.70±0.46 52.81±0.29 — — — — —
PartialFed 49.38±0.02 99.67±0.01 39.31±0.01 36.49±0.07 35.36±0.05 0.10 49.06±0.04 0.25
FedALA 57.03±0.03 99.71±0.00 54.68±0.57 54.81±0.03 — — — —

Our 57.35±0.04 99.70±0.01 52.01±0.33 53.01±0.04 — — — —

Table 8: The test accuracy (%) (and improvement (%)) on Tiny-ImageNet, MNIST, and Cifar100.
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